Al-Ni-V (Aluminum-Nickel-Vanadium)

V. Raghavan

The compilation by [1995Vil] of the phase diagram data on this system includes a liquidus projection, three isothermal sections at 1100, 1000, and 800 °C from [1977Mya], a partial isothermal section at 800 °C from [1965Ram], and two vertical sections along the NiAl₃-VAl₃ and Ni₂Al₃-V₅Al₈ joins from [1971Mya]. Two more isothermal sections were reported, one at 1300 °C by [1991Cot] and the other at 1200 °C by [1997Pri]. [1988Hon] determined the (Ni)/[(Ni) + Ni₃Al)] phase boundary as a function of temperature in ternary alloys and a pseudobinary section along the Ni₃Al-Ni₃V join.

Binary Systems

The Al-Ni phase diagram [1993Oka] has five intermediate phases: NiAl₃ (Fe₃C-type orthorhombic); Ni₂Al₃ (D5₁₃type hexagonal); NiAl (B2, CsCl-type cubic); Ni₅Al₃ (Ga₃Pt₅-type orthorhombic); and Ni₃Al (L1₂, AuCu₃-type cubic; also denoted γ'). Recently, the liquidus and solidus in the (Ni) region were redetermined by [2001Miu1]. The phase boundary between (Ni) and (Ni) + Ni₃Al was determined by [2003Ma] between 600 and 1200 °C. The Al-V diagram [2000Ric] depicts five intermetallic compounds: V₅Ål₈ (D8₂, Cu₅Zn₈-type cubic); VAl₃ (D0₂₂, TiAl₃-type tetragonal); V₄Al₂₃ (hexagonal); V₇Al₄₅ (monoclinic); and V₂Al₂₁ (cubic). The results of [2000Ric] gave lower peritectic formation temperatures of 1408 °C (1670 °C in [Massalski2]) for V₅Al₈ and 1270 °C (1360 °C in [Massalski2]) for VAl₃. The Ni-V phase diagram [1982Smi] depicts four intermediate phases: Ni₈V (NbNi₈-type tetragonal); Ni₃V

 $(D0_{22}, \text{TiAl}_3\text{-type tetragonal}); \text{Ni}_2\text{V}$ (MoPt₂-type orthorhombic); σ ($D8_b$, σ CrFe-type tetragonal); σ' (an ordered version of σ); and NiV₃ (A15, Cr₃Si-type cubic).

Ternary Phase Equilibria

With starting metals of 99.99% Al, 99.95% Ni, and 99.9% V, [1991Cot] arc-melted six alloy compositions with V contents up to 20 at.% under an Ar atmosphere and annealed them at 1300 °C for 24 h. The phase equilibria were studied by optical and transmission electron microscopy, x-ray diffraction, and electron probe microanalysis. Differential thermal analysis was done at a heating/cooling rate of 10 °C/min. A pseudobinary eutectic phase between NiAl and (V) was found at ~1370 °C. The partial isothermal section constructed by [1991Cot] at 1300 °C is redrawn in Fig. 1 to agree with the accepted binary data. The solubility of V in NiAl is at least 14 at.%.

With starting metals of high purity, [1997Pri] arc-melted about five alloy compositions with 50 to 65 at.% V and annealed them at 1200 °C for 20 to 40 h. The phase equilibria were studied with optical microscopy, x-ray diffraction, and electron probe microanalysis. The partial isothermal section constructed by [1997Pri] at 1200 °C is redrawn in Fig. 2 to agree with the accepted binary data. The homogeneity range of NiAl is considerably larger at 1200 °C (Fig. 2) than at 1300 °C (Fig. 1).

At the Ni-rich end, [1988Hon] arc-melted ternary alloy compositions from high-purity metals. With a combination

Fig. 1 Al-Ni-V partial isothermal section at 1300 °C [1991Cot]

Fig. 2 Al-Ni-V partial isothermal section at 1200 °C [1997Pri]

Fig. 3 Al-Ni-V: the (Ni)/[(Ni)+Ni₃V] phase boundaries at the indicated temperatures [1988Hon]

of differential thermal analysis and energy-dispersive x-ray spectroscope, they determined the $(Ni)/[(Ni) + Ni_3Al]$ phase boundary at a series of temperatures. This is shown in Fig. 3. Also, [1988Hon] constructed a pseudobinary section along the Ni_3Al-Ni_3V join (Fig. 4).

[2001Zap] used a three-dimensional atom probe technique to measure the composition of coexisting phases in a Ni-7at.%Al-14.5at.%V alloy The apex compositions of the tie-triangle (Ni) + Ni₃Al + Ni₃V at 800 °C were found to be 2.7at.%Al-16.2at.% V, 11.3at.%Al-12at.%V, and 1.7at.%Al-21.4at.%V, respectively. The compositions of (Ni) and Ni₃V are in satisfactory agreement with earlier work, but Ni₃Al is seen to dissolve much more V (12% versus 5% in [1977Mya]). The phase equilibria were also analyzed by [2001Zap] using a mean-field model and by [2001Par] using a Monte Carlo simulation.

Fig. 4 Al-Ni-V pseudobinary section along the Ni₃Al-Ni₃V join [1988Hon]

[2001Miu2] determined the liquidus and solidus temperatures in the region of the primary crystallization of (Ni) as a function of Al and V, as well as the solvus temperatures of (Ni).

References

- **1965Ram:** A. Raman and K. Schubert, On the Crystal Structure of Some Alloy Phases Related to TiAl₃: III. Investigations in Several T-Ni-Al and T-Cu-Al Alloys Systems (T = Transition Element), Z. Metallkd., Vol 56 (No. 2), 1965, p 99-104 (in German)
- **1971Mya:** K.P. Myasnikova, L.F. Ponomareva, L.I. Pryakhina, and I.K. Marshakov, Examination of Alloys of the System NiAl₃-VAl₃ and Ni₂Al₃-V₅Al₈, *Russ. Metall.*, (No. 1), 1971, p 126-128
- **1977Mya:** K.P. Myasnikova, V.Y. Markiv, L.I. Pryakhina, and G.Y. Motrychuk, Phase Equilibria in the V-Ni-Al System and Some Alloy Properties, *Russ. Metall.*, (No. 3), 1977, p 192-199
- **1982Smi:** J.F. Smith, O.N. Carlson, and P.G. Nash, The Ni-V (Nickel-Vanadium) System, *Bull. Alloy Phase Diagrams*, Vol 3 (No. 3), 1982, p 342-348
- **1988Hon:** Y.M. Hong, Y. Mishima, and T. Suzuki, Accurate Determination of γ' Solvus in Ni-Al-X Ternary Systems, *Mater. Res. Symp. Proc.*, Vol 133, 1988, p 429-440
- **1991Cot:** J.D. Cotton, M.J. Kaufman, and R.D. Noebe, Constitution of Pseudobinary Hypoeutectic β -NiAl + α -V Alloys, *Scripta Metall.*, Vol 25, 1991, p 1827-1832

- **1993Oka:** H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilib., 1993, Vol 14 (No. 2), p 257-259
- 1995Vil: P. Villars, A. Prince, and H. Okamoto, Al-Ni-V, *Handbook of Ternary Alloy Phase Diagrams*, ASM International, Vol 4, 1995, p 4222-4228
- 1997Pri: S.B. Prima, E.A. Morozova, and N.D. Bega, Phase Equilibria in Vanadium-Rich Alloys of the V-Ni-Al System, *Poroshk. Metall. (Kiev)*, (No. 7-8), 1997, p 43-47 (in Russian); TR, *Powder Metall. Met. Ceram.*, Vol 36 (No. 7-8), 1997, p 390-393
- 2000Ric: K.W. Richter and H. Ipser, The Al-V Phase Diagram between 0 and 50 Atomic Percent Vanadium, Z. Metallkd., Vol 91 (No. 5), 2000, p 383-388
- 2001Miu1: S. Miura, H. Unno, T. Yamazaki, S. Takizawa, and T. Mohri, Reinvestigation of Ni-Solid Solution/Liquid Equilibria in Ni-Al Binary and Ni-Al-Zr Ternary Systems, J. Phase Equilib., Vol 22 (No. 4), 2001, p 457-462
- **2001Miu2:** S. Miura, Y.M. Yong, T. Suzuki, and Y. Mishima, Liquidus and Solidus Temperatures of Ni-Solid Solution in Ni-Al-X (X: V, Nb and Ta) Ternary Systems, *J. Phase Equilibria*, Vol 22 (No. 3), 2001, p 345-351
- **2001Par:** C. Pareige and D. Blavette, Simulation of the FCC \rightarrow FCC + L_{1_2} + $D0_{2_2}$ Kinetic Reaction, *Scripta Mater.*, Vol 44, 2001, p 243-247
- 2001Zap: H. Zapolsky, C. Pareige, L. Marteau, D. Blavette, and L.Q. Chen, Atom Probe Analyses and Numerical Calculation of Ternary Phase Diagram in Ni-Al-V System, *CALPHAD*, Vol 25 (No. 1), 2001, p 125-134
- **2003Ma:** Y. Ma and A.J. Ardell, The $(\gamma + \gamma')/\gamma'$ Phase Boundary in the Ni-Al Phase Diagram from 600 to 1200°C, *Z. Metallkd.*, Vol 94 (No. 9), 2003, p 972-975